靜電放電(ESD)能導(dǎo)致電子產(chǎn)品出現(xiàn)器件損壞和高頻干擾兩種模式的失效,但由于ESD波形和傳輸路徑無(wú)法觀測(cè)而缺乏有效的ESD問(wèn)題解決方案。利用波形發(fā)生器定性地模擬靜電放電頻譜,使用頻譜儀測(cè)量?jī)?nèi)部電路耦合到的頻譜,能夠在不損壞器件的情況下定量評(píng)估ESD對(duì)內(nèi)部電路的注入能力從而分析出ESD傳輸路徑,是一種可以用于器件損壞ESD問(wèn)題分析的方法。模擬ESD頻譜進(jìn)行直接注入也能復(fù)現(xiàn)靜電干擾失效的現(xiàn)象,能夠探測(cè)定位內(nèi)部敏感電路,是解決靜電干擾型問(wèn)題的高效方法。防靜電器件性能的評(píng)估方法能夠篩選出合適的保護(hù)器件給出針對(duì)性的解決方案。實(shí)踐證明運(yùn)用這三種方法能夠高效解決ESD問(wèn)題,也為診斷分析脈沖干擾類問(wèn)題的提供了新的思路和方法,在此對(duì)該方法的原理和操作進(jìn)行簡(jiǎn)要介紹給大家作為參考。
1.???ESD放電波形與ESD頻譜模擬
干擾脈沖的時(shí)域波形和頻域頻譜對(duì)于分析脈沖的破壞力和干擾能力很重要。波形電壓越高持續(xù)時(shí)間越長(zhǎng)內(nèi)阻越小則脈沖能量越大,而上升沿越快半波時(shí)間越長(zhǎng)則頻譜越寬。靜電放電屬于脈沖型尖峰電壓沖擊,持續(xù)時(shí)間很短但峰值電壓幅度很高,瞬時(shí)能量相比于連續(xù)波高出多個(gè)數(shù)量級(jí),具備很強(qiáng)的破壞力。下圖是標(biāo)準(zhǔn)的ESD靜電波形,上升沿0.8-1.2nS?,波形半波時(shí)間30nS。靜電的破壞力集中在峰值電壓,而頻譜的干擾能力集中在上升沿和幾十納秒的半波時(shí)間。
圖一 IEC61000-4-2標(biāo)準(zhǔn)靜電放電校準(zhǔn)波形
靜電問(wèn)題分析有兩大難點(diǎn):一是探頭和測(cè)量設(shè)備不能實(shí)測(cè)電路內(nèi)部靜電脈沖;二是無(wú)法使用靜電槍直接對(duì)電路內(nèi)部放電進(jìn)行診斷分析。
而波形發(fā)生器可以幫助解決這兩個(gè)問(wèn)題:將脈沖信號(hào)轉(zhuǎn)換為持續(xù)信號(hào)能夠解決路徑分析問(wèn)題,用小信號(hào)替代靜電的高壓脈沖能夠安全的用于內(nèi)部注入。如下圖是波形發(fā)生器輸出10MHz,2nS上升沿方波,5V峰峰值的時(shí)域波形得到的頻譜,該波形能夠模擬出靜電波形的上升沿和高頻頻譜分量同時(shí)又沒有高壓破壞性。
圖二,波形發(fā)生器模擬靜電波形的實(shí)測(cè)頻譜
真實(shí)靜電頻譜相比模擬頻譜在100MHz以上的高頻幅度更大,頻譜寬度更寬,但速度太快無(wú)法用頻譜儀觀測(cè)。模擬頻譜的持續(xù)信號(hào)雖然頻寬和幅值低于ESD真實(shí)信號(hào)但能夠被頻譜儀觀測(cè),而且具備足夠測(cè)量深度以便測(cè)量出傳輸衰減,最重要的是信號(hào)對(duì)于整個(gè)低壓電路都是安全的,從而可以對(duì)內(nèi)部電路進(jìn)行細(xì)致的評(píng)估分析。
2.???利用ESD模擬頻譜進(jìn)行路徑分析
由于ESD干擾頻譜和脈沖的路徑是同一的,通過(guò)確定干擾頻譜傳輸路徑也就能分析出靜電脈沖的路徑,這就是通過(guò)模擬頻譜探測(cè)能夠?qū)崿F(xiàn)靜電路徑分析的基本原理。這種方法對(duì)于分析器件損壞問(wèn)題非常有意義。
圖三 靜電注入破壞器件的示意圖
上圖是一個(gè)ESD損壞失效案例的一般等效模型,該單板端口施加6kV接觸放電時(shí)100%概率造成內(nèi)部一個(gè)功能芯片損壞。損壞芯片與注入端口之間無(wú)電路連結(jié),無(wú)法進(jìn)行耦合路徑分析,且由于更換芯片非常耗時(shí)因此該問(wèn)題采用傳統(tǒng)方法解決難度很大,需要采用更高效的方法。
圖四 模擬靜電脈沖注入分析靜電注入路徑的示意圖
上圖是采用模擬頻譜分析靜電注入路徑的示意圖。端口注入持續(xù)的模擬頻譜(10MHz,2nS上升沿方波,5V峰峰值),采用隔直之后的探針連結(jié)頻譜儀觀測(cè)內(nèi)部電路耦合到的頻譜幅值,探針測(cè)試點(diǎn)和端口注入點(diǎn)之間的頻譜幅度差值就是兩點(diǎn)之間靜電傳輸損耗,也就可評(píng)估出靜電通過(guò)傳導(dǎo)和耦合進(jìn)入到內(nèi)部電路的程度。
圖五 模擬靜電注入探測(cè)電路內(nèi)部耦合能力的設(shè)備和布置
我們以上圖的布置進(jìn)行單板靜電耦合能力評(píng)估,采用插損夾具和金屬板作為參考面,注入和接收阻抗選擇50Ω,通過(guò)觀測(cè)頻譜的衰減判斷靜電在電路內(nèi)部的傳輸損耗:如衰減明顯時(shí)可以認(rèn)為該路徑對(duì)靜電能量傳輸有阻礙作用,如濾波器、隔離器件、電容電阻等器件管腳;而未觀察到頻譜衰減的電路可以認(rèn)為靜電能以良好通路注入到該部分。實(shí)際觀測(cè)發(fā)現(xiàn)板上很多位置得到0衰減的耦合,尤其是受損芯片某引腳全頻段未觀測(cè)到任何衰減,可以斷定靜電能從端口完全施加到該引腳并損壞芯片。該案例中對(duì)該引腳增加相應(yīng)的電容作為靜電吸收方案后可以觀測(cè)到頻譜有明顯的衰減(10dB下降),意味著靜電注入對(duì)該電路的耦合能力明顯下降,實(shí)測(cè)端口的靜電能力由6kV 100%損壞到10kV觀測(cè)不到損壞現(xiàn)象。
3.???利用波形發(fā)生器進(jìn)行ESD干擾問(wèn)題診斷分析方法
對(duì)于ESD干擾失效問(wèn)題,利用模擬頻譜進(jìn)行直接注入依然是高效的診斷分析方法,能夠快速?gòu)?fù)現(xiàn)問(wèn)題并且對(duì)內(nèi)部電路進(jìn)行定點(diǎn)分析,最終快速找到并驗(yàn)證解決方案。
圖六 模擬靜電脈沖注入分析靜電干擾問(wèn)題示意圖
靜電干擾的失效本身就是由靜電的高頻頻譜能量引起的,采用波形發(fā)生器模擬該高頻能量進(jìn)行注入能夠大概率的復(fù)現(xiàn)到相同的干擾現(xiàn)象。波形發(fā)生器采用10MHz方波脈沖50%占空比,1-10V峰峰值輸出能夠模擬出ESD在10-300MHz頻段的頻譜和幅值(針對(duì)不同問(wèn)題可以調(diào)整模擬波形參數(shù)進(jìn)行問(wèn)題復(fù)現(xiàn)),通過(guò)電容進(jìn)行隔離直流之后利用金屬探針就能對(duì)電路內(nèi)部進(jìn)行注入探測(cè)。這種方法不依賴其他資源而且可以在研發(fā)場(chǎng)地方便的進(jìn)行(只需要使用波形發(fā)生器、示波器、頻譜儀、接地參考板等),可以讓研發(fā)工程師非常從容地去分析和優(yōu)化解決方案。
4.???防靜電器件性能的評(píng)估方法
防靜電器件性能評(píng)估方法是2022年提出并發(fā)表于電磁兼容公眾號(hào)的一種新方法,由于對(duì)尋找ESD問(wèn)題的解決方案有很強(qiáng)的指導(dǎo)意義,在此結(jié)合診斷分析再進(jìn)行簡(jiǎn)要介紹。
圖七 防靜電器件性能測(cè)量原理示意圖
防靜電器件性能評(píng)估系統(tǒng)包括靜電槍、同軸夾具、3dB衰減器、同軸電纜以及示波器。標(biāo)準(zhǔn)靜電槍作為靜電源,通過(guò)比較初始電壓波形和附加防靜電器件之后的電壓波形就能分析出器件的抑制效果。
圖八 初始靜電波形校準(zhǔn)布置
400V初始靜電波形 | 800V初始靜電波形?超出示波器測(cè)量范圍 |
圖九 初始靜電脈沖在夾具上的分壓波形
400V靜電注入雙向TVS | 4000V靜電注入雙向TVS?吸收作用明顯 |
圖十 附加雙向TVS之后的分壓波形
圖上可以看出TVS對(duì)靜電注入脈沖波形產(chǎn)生截止作用,意味著TVS已經(jīng)觸發(fā)保護(hù)功能將靜電能量泄放,關(guān)斷保護(hù)后TVS存在殘壓,該實(shí)測(cè)結(jié)果與TVS規(guī)格吻合。TVS由于很小的結(jié)電容可以用于信號(hào)端口的ESD防護(hù)。
8000V靜電注入SMD 4.7uF?完全吸收 | 4000V靜電注入引線聚乙烯薄膜?2.2uF高效吸收 |
4000V靜電注入引線瓷片100nF?高效吸收 | 8000V靜電注入引線瓷片?100nF高效吸收 |
800V靜電注入引線瓷片?1nF?略有效果 | 1000V靜電注入引線瓷片?1nF?略有效果 |
圖十一 附加不同電容之后的的分壓波形
不同電容的測(cè)試結(jié)果我們可以看出電容對(duì)靜電的吸收效果有影響的是材質(zhì)、引線ESL和電容容量。100nF以上的貼片電容能夠完全吸收靜電的能量,1nF?貼片電容就能有一些吸收效果,其他材質(zhì)電容吸收效果稍遜于貼片電容,因此對(duì)于能夠增加電容的電路建議優(yōu)選貼片電容方案,不能使用電容的電路選擇TVS或ESD吸收器件。
5.???小結(jié)
本案例通過(guò)模擬頻譜注入分析路徑的方法找到芯片上對(duì)靜電脈沖耦合度最大的引腳,通過(guò)防靜電器件實(shí)測(cè)數(shù)據(jù)的指導(dǎo)對(duì)該引腳增加貼片電容分別對(duì)電源和地進(jìn)行靜電能量吸收,最終快速地定位和解決了該靜電問(wèn)題。
波形發(fā)生器脈沖模擬注入的方法在解決各類脈沖型抗擾度問(wèn)題(ESD, EFT, SURGE等)有很大的應(yīng)用潛力。將瞬態(tài)脈沖轉(zhuǎn)化為持續(xù)頻譜的再進(jìn)行耦合探測(cè)的方法能夠有效分析ESD器件損壞失效問(wèn)題,模擬干擾頻譜注入也能夠?qū)崿F(xiàn)ESD干擾失效類問(wèn)題的精準(zhǔn)定位,防靜電器件性能測(cè)試的方法對(duì)于ESD器件選型有指導(dǎo)意義,這三種措施的綜合應(yīng)用有可能成為ESD問(wèn)題的通用診斷分析方法。
如果您對(duì)本文內(nèi)容有任何意見和建議,敬請(qǐng)聯(lián)系本文作者:郵箱szq19@163.com。