加入星計(jì)劃,您可以享受以下權(quán)益:

  • 創(chuàng)作內(nèi)容快速變現(xiàn)
  • 行業(yè)影響力擴(kuò)散
  • 作品版權(quán)保護(hù)
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質(zhì)創(chuàng)作者
  • 5000+ 長期合作伙伴
立即加入
  • 正文
  • 相關(guān)推薦
申請入駐 產(chǎn)業(yè)圖譜

計(jì)算電流測量精度以提高功能安全

2021/09/06
556
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點(diǎn)資訊討論

隨著功能安全要求日益受到重視,改進(jìn)系統(tǒng)診斷功能勢在必行。其中,電流測量便是診斷評估的一項(xiàng)重要內(nèi)容。要確定設(shè)計(jì)的測量精度,務(wù)必要了解誤差源。

正如之前在信號鏈基礎(chǔ)知識 #141中所述,了解如何解讀數(shù)據(jù)表對于計(jì)算高側(cè)電流測量的精度非常重要。此外,了解外部元件的影響對于獲得正確的電流測量結(jié)果也至關(guān)重要。

高側(cè)電流檢測實(shí)現(xiàn)
在高側(cè)配置中,有兩種常用的電流測量方法:

使用差分運(yùn)算放大器,如圖1所示。

圖1?用于高側(cè)電流測量的運(yùn)算放大器電路

使用電流檢測放大器,如圖2所示。

圖2?用于高側(cè)電流測量的電流檢測放大器電路

這兩種方法具有一些根本的區(qū)別,主要體現(xiàn)在電流檢測放大器集成了增益電阻器網(wǎng)絡(luò),而運(yùn)算放大器則使用外部分立式電阻器作為其增益網(wǎng)絡(luò)。無論您使用哪種方案,基本系統(tǒng)傳遞函數(shù)都適用,如公式1所示:

公式1

其中

  • y?是輸出電壓 (VOUT)。
  • m 是系統(tǒng)增益,對于此系統(tǒng)為RSHUNT×G。G是為大多數(shù)電流檢測放大器預(yù)定義的,而對于運(yùn)算放大器,則為RF/RI。
  • x?是輸入電流(I)。
  • b 是系統(tǒng)的失調(diào)電壓。如果系統(tǒng)測量雙向電流,當(dāng)輸入電流為零時(shí),b 是輸出電壓。如果單向測量,b?在0A下的理想電壓為0V,但它可能會(huì)受到放大器輸出擺幅規(guī)格的限制。對于運(yùn)算放大器和電流檢測放大器,VOFFSET 通常是以輸入為參考規(guī)格。因此,b?實(shí)際上還需要考慮系統(tǒng)的增益。

電流測量的傳遞方程可改寫為公式2:

公式2

基于此基本傳遞函數(shù),有兩種誤差類型:增益和失調(diào)電壓。

增益誤差
系統(tǒng)增益誤差有兩個(gè)主要來源:分流電阻器和放大器增益。分流電阻器誤差對于運(yùn)算放大器或電流檢測放大器是常見的,通過查看電阻器規(guī)格表很容易確定,而放大器的增益誤差則取決于選擇的放大器方案。

對于差分運(yùn)算放大器方案,如前所述,增益是兩個(gè)電阻器的比率,即RF/RI。要計(jì)算誤差,需查看電阻器的數(shù)據(jù)表。典型分立增益網(wǎng)絡(luò)電阻器的容差為0.5%、100ppm/°C。要計(jì)算此比率的最大誤差,需假設(shè)一個(gè)電阻處于最大值,而另一個(gè)電阻處于最小值。這會(huì)在室溫下產(chǎn)生1%的誤差,并且由于假設(shè)會(huì)發(fā)生反向漂移,因此在125°C下為3%。

對于電流檢測放大器,增益誤差通常列在數(shù)據(jù)表中。圖3?顯示了德州儀器(TI)INA186-Q1的增益誤差??梢钥吹?,室溫下的增益誤差為1.0%。溫漂為10ppm/°C時(shí),125°C下的增益誤差為1.1%。

圖3?INA186-Q1增益誤差和增益誤差漂移規(guī)格數(shù)據(jù)表

這是TI電流檢測放大器的一個(gè)主要優(yōu)勢:精度匹配的集成增益網(wǎng)絡(luò)可更大限度地減少溫漂效應(yīng)。對于運(yùn)算放大器電路,您可以使用精度匹配的電阻器網(wǎng)絡(luò),但它們會(huì)顯著提高方案成本。

偏移誤差
如上所述,輸出失調(diào)電壓必須包括增益。由于失調(diào)電壓通常指定為以輸入為參考,因此公式3按如下所示計(jì)算失調(diào)電壓誤差:

公式3

從公式3中可以看出,當(dāng)VSHUNT?(IxRSHUNT) 接近失調(diào)電壓值時(shí),失調(diào)電壓誤差很重要,并且隨著電流變?yōu)?,失調(diào)電壓誤差將接近無窮大。相反,如果VSHUNT?>>VTOTAL OFFSET,那么此誤差項(xiàng)將接近0。

總輸入?yún)⒖际д{(diào)電壓具有三個(gè)主要組成部分:

  • 放大器VOFFSET?規(guī)格和漂移。

由于放大器的VOFFSET?通常在固定共模電壓和電源電壓下指定,因此CMRR和PSRR也是造成失調(diào)電壓誤差的因素。圖4?顯示了INA186-Q1的固定值,圖5顯示了常用運(yùn)算放大器TI TLV2186的固定值。

圖4?INA186-Q1在固定共模電壓和電源電壓規(guī)格下的CMRR和PSRR數(shù)據(jù)表

?

圖5?TLV2186在固定共模電壓和電源電壓規(guī)格下的CMRR和PSRR數(shù)據(jù)表

正如信號鏈基礎(chǔ)知識 #141 中所述,數(shù)據(jù)表中電流檢測放大器的VOFFSET?指定方式與運(yùn)算放大器不同。具體而言,電流檢測放大器失調(diào)電壓包括集成電阻器網(wǎng)絡(luò)的影響,而運(yùn)算放大器VOFFSET?僅適用于器件。運(yùn)算放大器方案中的總失調(diào)電壓需要將外部電阻器的影響考慮在內(nèi)。

由于電流從共模電壓流經(jīng)外部電阻器,因此可將外部電阻器視為導(dǎo)致共模抑制誤差的原因。假設(shè)所有四個(gè)增益電阻器具有相同的容差,根據(jù)公式4,電路的增益和電阻器的容差將確定“電阻器CMRR”:

?

公式4

圖6 所示為不同增益和電阻器容差下計(jì)算出的電阻器CMRR(以分貝為單位),您可從中看到不同增益和電阻器容差所產(chǎn)生的影響。

圖6?在三種不同增益配置、不同電阻容差下計(jì)算出的CMRR值

對于電流檢測放大器,只需將CMRR和PSRR的影響添加到器件的失調(diào)電壓規(guī)格中,即可計(jì)算出總輸入失調(diào)電壓。通常會(huì)在整個(gè)溫度范圍內(nèi)指定CMRR和PSRR;因此,任何漂移影響都已考慮在內(nèi)。但是,計(jì)算不同溫度下的誤差時(shí)必須考慮溫漂。

總誤差
理論上,最壞情況下的總誤差只是各個(gè)誤差項(xiàng)的總和。從統(tǒng)計(jì)學(xué)角度講,所有誤差同時(shí)發(fā)生的這種情況不太可能發(fā)生。因此,使用平方和根方法(公式5)計(jì)算一階總誤差:

公式5

圖7?列出了使用INA186-Q1和TLV2186且增益為20時(shí)的關(guān)鍵性能指標(biāo)。

圖7?使用INA186-Q1或TLV2186實(shí)現(xiàn)高側(cè)電流測量應(yīng)用的關(guān)鍵性能指標(biāo)

圖8?展示了兩種方案使用10mΩ、0.5%、50ppm/°C RSHUNT 分別在室溫和125°C 時(shí)用公式5計(jì)算得出的以下誤差曲線。

圖8 高側(cè)電流測量方案結(jié)合使用INA186-Q1或TLV2186以及10mΩ、0.5%、50ppm/°C RSHUNT 時(shí)的平方和根誤差曲線

從圖7和圖8中可以看出,外部增益電阻器是分立式方案的主要誤差源,在溫度變化時(shí)尤為明顯。校準(zhǔn)可以更大限度地降低室溫下的失調(diào)電壓誤差,但溫漂不容易校準(zhǔn)。

總結(jié)
通過增加可實(shí)現(xiàn)的設(shè)計(jì)裕度,提高電流檢測方案的精度可以提高系統(tǒng)的診斷能力。但與任何電子系統(tǒng)一樣,提高精度通常需要增加系統(tǒng)成本。通過了解不同工作條件下的誤差源及其影響,您能夠在成本和精度之間做出適當(dāng)?shù)臋?quán)衡。

相關(guān)推薦